An economic analysis of controlling root and butt rot disease: Douglas-fir and western red cedar

Mike Cruickshank, Canadian Wood Fibre Centre, Pacific Forestry Centre, Victoria BC
Bryan Bodganski, Industry, Trade and Economics Group
Pacific Forestry Centre, Victoria BC
Key Points

• Stump removal for root rots shifts growth and yields upwards
• Stump removal for butt rot leads to increased cedar yields in older stands, especially larger logs
Key Points

• Stump removal is economically feasible under certain economic and ecological conditions
• Inclusion of carbon prices improves expected economic returns
• Stump removal to treat butt rot in western red cedar stands economically limited
Western Red Cedar and Douglas-fir

Cedar
• Slow growing initially
• Highest internal decay volume of any conifer (field) – most decay resistant in service
• Deer browse young trees on coast only
• Rarely attacked by insects

Douglas-fir
• Fast growing
• Highly susceptible to several root rots and one insect
Interior Cedar Hemlock and Coastal Western Hemlock zones
Most productive in Canada
Site Productivity

• Site indices describes productivity of a site
• Usually given as tree height in meters at age 50 for the tallest trees in the stand
• Productivity of sites a key factor in economic analysis

Good site index (SI) for:

<table>
<thead>
<tr>
<th>Site</th>
<th>ICH</th>
<th>CWH</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF</td>
<td>25</td>
<td>32</td>
</tr>
<tr>
<td>WRC</td>
<td>22</td>
<td>26</td>
</tr>
</tbody>
</table>

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2017
Root disease and butt rot effects

1) Growth loss – both
2) Mortality – root disease mainly
3) Butt decay
4) Wind throw/stem breakage- both
5) Wood quality downgrades - both
Biology of Armillaria root disease

- Present on roots of trees for years
- Colonizes stumps after cutting or root system after killing tree
- Transfers from stump to roots by root contact—rarely by spores
- Travels to root collar, girdles the stem and kills tree
- Host range - all trees
- Geographic range A. ostoyae—circumpolar northern hemisphere
- More than 30 Armillaria species cover globe
- Increased hazard in younger sites with temperature and temperature and rainfall in older sites
A. ostoyae belowground incidence over time in planted stands

25-year-old planted Douglas-fir

18-year-old planted Douglas-fir
Timing of Armillaria root disease mortality

Douglas-fir plantations

Douglas-fir natural stands
Biology of cedar butt rot

- 25 species of basidiomycete fungi
- Four white rot and two brown rot most common
- Half spread by spores and half by spores and root contacts
- How these fungi enter tree has never been studied
- Armillaria root rot creates infection courts for butt rot
- Wounds probably infection courts
Western Redcedar Butt-rot

- Conical decay at the base of the tree
- Positioned at the center of the basal logs
- Often renders high quality logs at base of tree unusable
- High presence in first-growth stands
Root and butt rot control

Root disease

- **Sanitation** - stump removal
- **Resistance**
 - within susceptible species possible but not deployed yet
 - Alternate resistant species

Butt rot — no active control program

- **Sanitation** - stump removal currently not done
- **Resistance**
 - possible within species by heartwood extractives or other mechanisms like active defense

- **Wound** control
Stump removal strategy: Sanitation tactic: stump removal (inoculum)

Reduce quantity of primary inoculum after harvest-lowers incidence and impact

Benefits- works for all impacted tree species -physical control- >80% efficient

Problems- site limited (slope <30%), expensive

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2017
Effects of stump removal on yield and decay

Butt Rot

Root disease
Biology simulated in TASS/ROTSIM – Collaboration of BC forestry, CFS and contractors

Armillaria on Douglas-fir at 1600 st/ ha SI=25

- high inoculum
- no disease
- low inoculum
- medium inoculum

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2017
Economic Methods

• Maximum net present value of discounted cash flow from timber or carbon over infinite horizon
 – Faustmann-Hartman-vanKooten et al. methodology: soil expectation value (SEV)/land expectation value (LEV)/site value (SV)
 – Carbon payments received (expensed) when carbon sequestration (emissions) occurs: balanced treatment of emissions and removals

• Compare LEV for stumped scenarios and unstumped scenarios for Douglas-fir and Western red cedar plantations

• Consider different levels of disease and economic conditions for different forest site conditions
Interior Douglas-fir data and assumptions

<table>
<thead>
<tr>
<th>Economic Factors/Conditions</th>
<th>Good</th>
<th>Base</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stumping costs ($/ha): Cs</td>
<td>700</td>
<td>850</td>
<td>1000</td>
</tr>
<tr>
<td>Planting costs ($/ha): Cp</td>
<td>650</td>
<td>800</td>
<td>950</td>
</tr>
<tr>
<td>Timber prices ($/m3) (maximum): Pt</td>
<td>40</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Carbon prices ($/t CO2): Pc</td>
<td>25</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Interest rates (%): r</td>
<td></td>
<td>3 to 6</td>
<td></td>
</tr>
</tbody>
</table>

- Merchantable volume in cubic metres for utilization up to 12.5 cm tops every 5-yrs up to 125 yrs
- Above and below ground live biomass (carbon) and carbon in dead organic matter pools (tonnes)
- Carbon in dead organic pools released at a rate of 30% per year and then either 1) all carbon is released at time of harvest or 2) 75% of live carbon and 100% of dead is released to atmosphere
- Planting density 1600 stems per hectare

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2017
Douglas-fir Growth and Yield Simulations

- Higher levels of disease greatly impact stand yields around 40 years of age
- Impacts on volume increase on more productive lands
• Stumping is feasible on highly productive sites with good economic conditions. More opportunity if disease levels are higher. Discount rates greater than 4% do not support stumping.

• Stumping on SI 25 supported if disease levels high and economic conditions are good.
Douglas-fir Carbon and Timber Results: Low disease levels and 3% discount rate

- With carbon values and average or above economic conditions stumping is feasible on sites as low as SI20.
- Stumping is feasible under higher discount rates if economic conditions good or disease levels are higher.
Interior Douglas-fir conclusions

• Stumping to control root rot diseases is economically feasible under good conditions – good site quality and good economic conditions (low costs, good timber prices)
• Carbon values improve economics of stumping.
Western Red Cedar – Interior BC

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Good</th>
<th>Base</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum stumpage price ($/m³)</td>
<td>51.47</td>
<td>40.85</td>
<td>30.23</td>
</tr>
<tr>
<td>Stumping cost ($/ha)</td>
<td>700</td>
<td>850</td>
<td>1000</td>
</tr>
<tr>
<td>Planting cost ($/tree)</td>
<td>0.85</td>
<td>0.9</td>
<td>0.95</td>
</tr>
<tr>
<td>Harvesting Fixed Cost ($/ha)</td>
<td>1500</td>
<td>2000</td>
<td>2500</td>
</tr>
<tr>
<td>Carbon Price ($/tCO2)</td>
<td>30</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>
Simulation - Damage caused by butt-rot

Volumes of Large and Medium Sawlogs with Age (Stumped Vs. Non-Stumped)

Cubic meters per ha
0 100 200 300 400 500 600 700 800 0 10 20 30 40 50 60 70 80 90 100 110 120

- Stumped - Large Sawlog
- Stumped - Medium Sawlog
- Not Stumped - Large Sawlog
- Not Stumped - Medium Sawlog

Percentage butt-rot affected vol. to total stand vol. with age

0% 5% 10% 15% 20% 25%
0 10 20 30 40 50 60 70 80 90 100 110 120

Site Index – 20; Planting density - 1000
Timber Soil Expected Value Stumped vs. Non-Stumped for Butt Rot ($ per hectare) – Interior western red cedar

Base economic conditions; Planting density - 1000
Optimal Timber Rotation Ages (Discount Rate - 3%)

<table>
<thead>
<tr>
<th>Planting Density</th>
<th>Economic Conditions</th>
<th>Site Index - 15</th>
<th>Site Index - 20</th>
<th>Site Index - 25</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Stumped</td>
<td>Not-Stumped</td>
<td>Stumped</td>
</tr>
<tr>
<td>1000</td>
<td>Poor</td>
<td>100</td>
<td>95</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Base</td>
<td>95</td>
<td>90</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Good</td>
<td>90</td>
<td>85</td>
<td>70</td>
</tr>
</tbody>
</table>

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2017
Forest Soil Expected Value Stumped vs. Non-Stumped for Butt Rot ($ per hectare) – Interior western red cedar

Base economic conditions; Planting density - 1000
Western red cedar conclusion

• Replanting Cedar is economically viable and has a positive NPV

• Planting at higher densities may be beneficial if carbon values are considered

• Stumping is not economical, as butt-rot impacts happen too late in stand age (only under best site and economic conditions)

• Harvesting at an earlier age helps minimize the impacts of butt-rot and improve economic returns
Conclusions

• Site productivity is very important
• Economic conditions matter
• Genetically improved planting stock not considered but would improve soil expectation values on stumped sites
• Root rot results likely similar for western larch
• Further research has to be carried out on the quality and value of second growth cedar logs
Team

Bryan Bogdanski (CFS), Mike Cruickshank (CFS), Injamam Alam (UVIC economics grad student), Cosmin Filipescu (CFS), Derek Sattler (CFS), Mario Di Lucca (BCMF), Ken Polsson (BCMF)

And thanks to: Cynthia Lidstone (BCMF) and Jeff McWilliams (Blackwell & Associates) for sharing information and expertise on cedar log values; the BC Government stand modeling group; and Ian Cameron (Azura Formetrics), Jim Goudie (BCMF) and Robert McDonald (RAMSOFT) for modeling development