Projecting impacts of climate change on reclaimed forest in the mineable oil sands

Shifting reclamation targets?

Hedvig Nenzén, David Price, Brad Pinno, Elizabeth Campbell, Dominic Cyr, Yan Boulanger, Anthony Taylor
Northern Forestry Centre, January 10th 2018
Area currently and potentially disturbed

Canada: 3rd largest oil reserves worldwide
Oil Sands surface mining

Tailings = by-product with high concentrations of sodium, sulfate, chloride, and hydrocarbons (naphthenic acids, benzene)

Luna and Naeth 2014
Aerial view of CNRL Oil Sand mine
Vegetation: initial and planned after mining

Reclamation – areas of ‘equivalent capability’ remain almost constant
Project objectives

- Operators are legally required to reclaim to ‘equivalent capability’
- With climate change, are pre-disturbance ecosystems feasible?
- Identify a baseline with future vegetation in CNRL in absence of mining

Audet et al. 2015,
Rooney et al. 2015
Project objectives

• Operators are legally required to reclaim to ‘equivalent capability’
• With climate change, are pre-disturbance ecosystems feasible?
• Identify a baseline with future vegetation in CNRL in absence of mining
• Oil Sands landscape impact?
• Identify possible climate-suitable reclamation

Audet et al. 2015, Rooney et al. 2015
Method: Link two vegetation models

1. **Picus**: assess how climate and soil conditions affect tree growth and establishment probabilities

2. **Landis-II**: multi-species succession, dispersal in the entire landscape with natural disturbances

Lexer and Hönninger 2001, Scheller and Mladenoff 2004
Oil Sands future climate:

- Temperature
- Precipitation
- Climate Moisture Index (CMI, Hogg 1997) = precipitation – potential evapotranspiration

- 3 General Circulation Models (GCM)
- 3 Representative Concentration Pathways (RCPs)
Disturbances: Drought

- Drought is an important cause of aspen mortality in Alberta.
- Climate Moisture Index (CMI) = precipitation – potential evapotranspiration.

Disturbances: Drought

- Drought is important cause of aspen mortality in Alberta
- Climate Moisture Index (CMI) = precipitation – potential evapotranspiration
- Adjusted slope by: = drought tolerance (other species) / drought tolerance (aspen)

Disturbances: Fire and Harvesting

• Fire probabilities
 – Canadian Homogeneous Fires Regimes
 – Annual area burnt increases from 0.2% to 1.6% under severe climate change

• Harvesting
 – Within Alpac (Alberta-Pacific Forest Industries) FMA
 – 2 % / 10 years
Landis-II vegetation model

- Species
- Initial distribution
 - Alberta Vegetation Inventory with most common species
- % sand and clay -> Water holding capacity and pH in each soil
- 20 m resolution
 - 20 x 18 km, 1.8 million grid cells
- Simulate 2000-2300
 - Combinations of disturbances and climate change

AOSERP 1979, Digitized by CFS
Results – final average biomass declines under severe climate change scenarios

GCMs produce generally similar projections
Results – final average biomass declines under severe climate change scenarios

GCMs produce generally similar projections

Disturbances produce similar projections
Results: deciduous forest dominates under severe climate change
Comparison to National Forest Inventory data in Oil Sands

Low-biomass stands not predicted – because no wetlands in model

High-biomass aspen stands not predicted – because too long fire-return interval?
Results: deciduous forest dominates under severe climate change
Results: deciduous forest dominates under severe climate change
Results: deciduous forest dominates under severe climate change
Conclusions

- Conifers replaced by deciduous, disturbance-adapted species under climate change
 - Grasses and wetlands?
- Decline of boreal forest also projected by other models
 - Detailed soils maps, Multiple GCMs, Drought
- Baseline simulation results can inform reclamation plans
 - Plant drought-tolerant species

Next steps: Include Mining and Reclamation

- Model vegetation growth on disturbed and reclaimed areas
- Identify possible climate-suitable reclamation
Oil sands reclamation practices

AEW, 2002

Brad Pinno, at CNRL

AEW, 2002

Suncor, tailings pond
Oil sands reclamation – future land forms
Oil sands reclamation – modelling soil substrates

Reclamation substrates are different from natural soils
- Overburden: Mixed, no root regeneration, different nutrients
- Tailings: fewer data

Use model and experimental data
- Physiological & biogeochemical vegetation model
- Past reclamation on tailings

NST = Non-Segregated Tailings
CNRL EIA 2002
Next steps: extend to whole Oil Sands region:

- Landscape-scale projections of vegetation
 - Disturbance and reclamation
 - In-situ mining
 - Combined with climate change impacts

Thank you!
References

