Developing simulation models and decision support tools for adaptation to climate change in forest ecosystems

Guy R. Larocque

Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., Quebec (QC).

Guy.Larocque@Canada.ca
Outline of presentation

➢ Introduction
 - Impacts of climate change on forests – synthesis
 - Research related to climate change
➢ Overview of forest simulation models
➢ Usefulness of models for climate change prediction
➢ Research needs and challenges
 - Integration of models
 - Adapting models
➢ Adapting a model: example using a succession model
➢ AMSIMOD
➢ Conclusion
Introduction

Climate change is expected to have impacts on forest ecosystems (IPCC 2014):

- Physiological processes
- Phenology
- Competitive interactions

- Carbon cycling
- Carbon allocation
- Tree and stand growth

- Disturbance rate (e.g., wildfire, insect outbreaks, environmental pollution)

- Wood quality (e.g., density)
- Resistance to stress

- Forest succession
- Species composition (e.g., biodiversity, species migration)
Introduction

- Research related to climate change (1):
 1) Field & growth chamber experiments (e.g., FACE)
 2) Development of statistical relationships between growth indices and climatic variables
 3) Development of simulation models
Introduction

- Research related to climate change (2):
 - Each type of research project contributes to better understanding the impacts of climate change on forest ecosystems
 - Improved understanding is essential for adaptation to climate change
 - But, adaptation needs for simulation models and decision-support tools to evaluate long-term effects of forest management practices
Introduction

➢ Many forest simulation models have been developed
➢ On-going activities are impressive and complex:
 ▪ Tree species differ in ecophysiological characteristics
 ▪ Forest types: even- & uneven-aged pure and mixed forest types
Overview of simulation models

Four general categories

➢ Statistical empirical growth and yield models
➢ Succession models: gap and landscape
➢ Process-based models (physiological and carbon cycling)
➢ Forest management models
Overview of simulation models

Statistical empirical growth and yield models

- Whole-stand and single-tree models
- Models derived from empirical knowledge
- Use of data collected in inventory surveys
- Statistical methods used to estimate their parameters
- Example of a typical equation form:
 \[\Delta \text{dbh} \text{ (e.g., cm/year)} = f(\text{mean } bbh_t, \text{ basal area}, \text{ site index}) \]
 \[Dbh_{t+1} = Dbh_t + \Delta \text{dbh} \]
- Examples of recognized models:
 1- Forest Vegetation Simulator (USDA Forest Service)
 2- PrognosisBC
Overview of simulation models

Statistical empirical growth and yield models

Some limitations

➢ Their development is based on past history
➢ They do not focus on explaining the underlying mechanisms
➢ They may be accurate, but their predictions are reliable only under the conditions within which they were derived
➢ They are not very flexible to predict the development of:
 - Uneven-aged mixed stands
 - Effects of perturbations or changing conditions
Overview of simulation models

Succession models: Gap type

➢ Individual-tree models
➢ Mechanistic basis
➢ Adapted for uneven-aged mixed forest types with complex structures
➢ Simulated processes:
 ▪ Light interception
 ▪ Environmental constraints on growth
 ▪ Competition
 ▪ Tree mortality
 ▪ Treefall gaps
 ▪ Regeneration establishment
Overview of simulation models

Succession (gap) models

Environmental constraints on growth

Available light - $R(Q_h)$

Temperature - $R(DJ)$
Overview of simulation models

Succession (gap) models

Environmental constraints on growth

Site fertility - R(F)

Soil moisture - R(D)

Responsive
Intermediate
Stress-tolerant

Drought intolerant
Intermediate
Drought tolerant

Relative growth rate

Relative drought-days

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2016
Overview of simulation models

Succession (gap) models

Examples of models:
FORET
ZELIG
ZELIG-CFS
ZELIG-TROP
FORMIND
UVAFME
Overview of simulation models

Process-based models

Contain mathematical statements that represent the ecophysiological processes that govern tree and stand growth:

- Photosynthesis, evapotranspiration
- Maintenance and growth respiration
- Mineralization
- Allocation
- Mineralization
- Absorption, adsorption
- Translocation

Climate

Water cycle

Ecological cycle

Carbon

Ecophysiological process

Nitrogen
Overview of simulation models

Process-based models

Schematic diagram of FOREST-BGC

Examples: BIOME-BGC, CBM-CFS, EFIMOD, CENTURY

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2016
Overview of simulation models

Process-based models

Why process-based models?

Climate change

Temperature
Precipitation
Length of growing season

Climate processes

Carbon allocation

Tree and stand growth

Wood quality

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2016
Overview of simulation models

Process-based models

Availability of growth hormones and photosynthates
Temperature
Precipitations
Length of growing season
Other effects?
Usefulness of models for climate change prediction

<table>
<thead>
<tr>
<th>Model type</th>
<th>Modelling scope</th>
</tr>
</thead>
</table>
| Empirical Growth & yield | Limited potential:
- Long history of development;
- **But**: models based on past history. |
| Succession | Good potential:
- Long history of development;
- **But**: do not contain sufficient details on the interactive effects of CO₂ increase and changes in temperature and precipitation. |
| Process-based | Strong potential:
- Short history of development
- Detailed representations of ecophysiological processes
- **But**: still in their infancy |
Usefulness of models for climate change prediction

<table>
<thead>
<tr>
<th>Model type</th>
<th>Projection time frame</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical Growth & yield</td>
<td>Short-term</td>
<td>- Prediction of annual allowable cut</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Effects of silvicultural treatments</td>
</tr>
<tr>
<td>Succession</td>
<td>Short- & long-term</td>
<td>Information on forest succession (e.g., Do management activities affect the long-term dynamics in such a way that undesirable succession takes place?)</td>
</tr>
<tr>
<td>Process-based</td>
<td>Long-term</td>
<td>Research & information on the impacts of major disturbances</td>
</tr>
</tbody>
</table>
Research needs and challenges: Integration of models

- Hybrid models (new generation of models)?
- Combined use of different model types (1)?

Process-based models

\[\text{\uparrow}\]

Gap models

\[\text{\downarrow}\]

Empirical growth and yield models

e.g., FVSBGC (Milner et al. 2003*)
Research needs and challenges: Integration of models

➢ Combined use of different model types (2) ?

Comparison of the errors generated from different models (uncertainty analysis)
Research needs and challenges: Adapting models

➢ There is still little understanding of the complexity of the ecophysiological processes

➢ But, prediction needs for climate change adaptation policy development still remain important

➢ It is not realistic to wait for the “perfect” model(s) for climate change prediction

➢ Models can be adapted to make realistic predictions of the impacts of climate change
Adapting a model to predict the impacts of climate change: example using a gap model

On-going efforts with ZELIG-CFS (1)

- Mechanistic basis;
- Initialized with ecological variables:
 - Species-specific ecological variables
 - Mean monthly temperatures and precipitations
 - Soil texture
 - Tree dbh values

- Validation for boreal forest types in northwestern Ontario indicated good agreement between predictions and observations
Simulation results for northern Ontario Validation dataset

➢ Three historical datasets in Northwestern Ontario

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Number of sample plots</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Can*</td>
<td>152</td>
</tr>
<tr>
<td>Kimberly Clark</td>
<td>118</td>
</tr>
<tr>
<td>Spruce Falls Power and Paper</td>
<td>122</td>
</tr>
</tbody>
</table>

*Results presented for this dataset.

➢ Pure and mixed even- & uneven-aged boreal forest types

<table>
<thead>
<tr>
<th>Trembling aspen</th>
<th>Jack pine</th>
<th>Balsam fir</th>
</tr>
</thead>
<tbody>
<tr>
<td>White birch</td>
<td>Black spruce</td>
<td>Northern white cedar</td>
</tr>
<tr>
<td>Larch</td>
<td>Balsam poplar</td>
<td>White spruce</td>
</tr>
</tbody>
</table>

➢ Re-measurements: between 4 and 15, maximum year: 57
Results – Balsam fir

Average observed and predicted basal area

Note: Error bars are standard deviations

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2016
Results – Black spruce

Average observed and predicted basal area

![Graph showing average observed and predicted basal area over years]

Note: Error bars are standard deviations

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2016
Results – White birch

Average observed and predicted basal area

Note: Error bars are standard deviations

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2016
Results – White spruce

Average observed and predicted basal area

Note: Error bars are standard deviations

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2016
Adapting a model to predict the impacts of climate change: example using a gap model

On-going efforts with ZELIG-CFS (2)

➢ Development of model components to gradually increase mean annual temperature and precipitations

➢ The effect of CO$_2$ increase can be emulated using species-specific fertility factors (from the literature)

➢ Development of uncertainty analysis algorithms to capture variability in the predictions
AMSIMOD
(Application for the Management of Simulation MODEls)

➢ A modelling software platform that facilitates the development and application of forest models and use of analytical tools for decision support
➢ Fills a gap in modelling software by allowing users to manage different types of models (e.g., forest growth models, succession models, carbon cycle models, wood quality models or management models)
➢ Policy development for climate change adaptation requires the use of different models
Basic framework of AMSIMOD

- Model 1
- Model 2
- Model n

Results
- Ecosystem level
- Landscape level
- Regional level

Analytical & numerical processing
- Sensitivity analysis
- Uncertainty analysis
- Statistical analysis
- Spatial analysis
- Optimization (linear or nonlinear programming)
- Artificial intelligence

Reporting tools
- Graphs
- Geographic Information Systems
- Virtual imagery applications

Generation of management scenarios
A project in AMSIMOD

Workspace

Active project

Succession

Model: ZELIG_CFS_Model_v34.exe
ZELIG-CFS is a gap model

Initialization file(s):
Input_LeMauricie_Controls_Version3
Input file for LaMauricie National Park

Output file(s):
Treedbh_output
Individual tree dbh output
Basal/Area_Output
Basal area results over time for each plot by species
Density_Output
Table that summarizes density results
PlotsInfo_Output
Information on simulation density results
QGIS_Output
For each plot, this file provides the name of the files that contains location information

Photosynthesis

Model: FORECAM_mod.exe
Photosynthesis model
AMSIMOD utilities to display simulation results
Dynamic visualization on QGIS
AMSIMOD

End-users can add extensions (tools) to facilitate the decision-making process:
Examples: - Biodiversity indices
- Carbon sequestration
- Forest management applications

Available extensions:
- eFRI application for the boreal forest of northern Ontario (plugin in Q-GIS)
- Partial cut applications
Conclusion

➢ The impacts of climate change are not limited to tree and stand productivity
➢ Many forest simulation models have been developed, but it is imperative to improve their realism and precision for climate change prediction
➢ Forest simulation models are essential for adaptation to climate change
Conclusion

For more information on forest models