Improving forest resilience to climate change and extremes with genetics

Miriam Isaac-Renton, PhD, RPBio, FIT
(on behalf of many collaborators)
Canadian Wood Fibre Centre – Pacific Forestry Centre
Canadian Forest Service, Natural Resources Canada

Canadian Institute of Forestry
March 3, 2021
Enhance resilience with genetics

- Opportunities through reforestation
 - 500 million seedlings planted/yr in Canada
 - One of the most important silviculture decisions
 - Get it right: Which genotypes are best?
 - Screen tree populations for resilience
Forest genetics can enhance resilience

1. Is seed climatically well-suited?
 - Evaluate risk trade-offs to guide **seed transfer**
 - Genetic variation among populations

2. What is the genetic quality?
 - **Tree breeding** and selection
 - Genetic variation within populations
1. Climate suitability
1. Climate suitability
2. Genetic quality

- Seed orchard
 - Select & collect
 - Test in progeny trials
 - Crosses (breeding)
 - Select & collect

Spatial layout of one progeny trial; each cell represents a tree coloured by a response variable.

Douglas-fir range

North America
2. Genetic quality
2. Genetic quality

2. Genetic quality

Phenotyping response to extremes: Tree rings

- Archives of:
 - Growth responses to drought & frost signatures

- Powerful when combined with older forest genetic trials:
 - Same age, same initial planting density
 - High replication – elegant experimental designs
 - Known: Origin and/or parent-offspring relationships
 - Genetic component of variation in responses
Phenotyping response to extremes: Tree rings

1. Climate suitability

1. Climate suitability

- Mechanisms – Cellular properties

Micro section photos by David Montwé @ UBC
1. Climate suitability

Isaac-Renton M et al. 2018. Northern forest tree populations are physiologically maladapted to drought. *Nature Communications.* 9: 5254
1. Climate suitability

Normal ring boundary

Blue ring (fall cold event)

Big blue ring + distortions (severe fall cold event)

Distortions in earlywood (spring cold event)

Isaac-Renton M et al. (In Prep) Selecting suitable seed sources for reforestation in the north.
2. Genetic quality

- Two important, sympatric conifers
- Decades of tree breeding & gain
- Dieback & mortality – drought-induced?
- Field experiments established in 1999

2. Genetic quality

2. Genetic quality

Can we use tree rings to screen tree breeding populations for resilience to drought?
2. Genetic quality

Douglas-fir

Western redcedar

Genetic component behind this variability?
2. Genetic quality

- Heritability: $h^2 = V_G/V_P$

<table>
<thead>
<tr>
<th>Heritability</th>
<th>Coastal Douglas-fir</th>
<th>Western redcedar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trait</td>
<td>h^2</td>
<td>SE</td>
</tr>
<tr>
<td>Height</td>
<td>0.28</td>
<td>0.07</td>
</tr>
<tr>
<td>Resistance</td>
<td>0.19</td>
<td>0.06</td>
</tr>
<tr>
<td>Recovery</td>
<td>0.06</td>
<td>0.05</td>
</tr>
<tr>
<td>Resilience</td>
<td>0.19</td>
<td>0.06</td>
</tr>
<tr>
<td>Relative Resilience</td>
<td>0.10</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Drought resilience moderately heritable

2. Genetic quality

2. Genetic quality

Douglas-fir

Western redcedar

Opportunities to further screen for resilience

2. Genetic quality

Can we use tree rings to screen tree breeding populations for resilience to drought?

- Heritable and variable trait
- No strong genetic trade-offs
- High-yielding and climate-resilient families

YES, but…
Tree ring limitations

- Slow & laborious
 - Wait to evaluate resilience
 - Labour-intensive
 - Facilities not always available

- Lower sample size
 - Reduced precision

Photos by Lori Daniel's Tree-Ring Lab @ UBC
Rapid phenotyping through remote sensing?

• Real-time sensors to detect:
 • Growth, drought and phenology
 • Linked to field climate data

• Aerial phenotyping platform
 • Field trials

• Terrestrial phenotyping platform
 • Raised beds

(Tyrone Keep. U of S Plant Phenotyping and Imaging Research Centre (P^2IRC) -tyrone.keep@usask.ca)
Take aways

- Enhance resilience through seed transfer and genetic selection
 - Climate warming & extremes
 - Growth, drought and frost risk - tree rings

- Faster alternatives to phenotype response to extremes needed

- Multiple approaches

- Benefits to mitigating impacts
Thanks to a great team!

The work presented is made possible thanks to contributions from many.

Too many people to thank individually, but many contributed to this work: co-authors, collaborators and data contributors; scientists who created technologies or tools that enabled genotyping or phenotyping work; data management specialists; field or laboratory specialists; computing specialists; administrative support specialists; funding programs or agencies; to knowledge exchange specialists who helped promote the work; and to multiple colleagues who helped refine ideas through highly constructive feedback during informal reviews or conversations:

BC Ministry of Forests, Lands, Natural Resource Operations and Rural Development

...and many more!

Financial support from the Canadian Wood Fibre Centre's Fibre Solutions Program and Opportunity Fund, the Province of British Columbia’s Land Based Investment Strategy (LBIS), The Natural Sciences and Engineering Research Council of Canada, and the Genomics Research and Development Initiative.
Questions?

miriam.isaac-renton@canada.ca